Как из PostgreSQL и ClickHouse в Python много, быстро и сразу в numpy

Разбил много ☕кружек в поисках решения для 🏎️быстрого получения длинных историй цен для большого количества активов в Python🐍. Ещё имел смелость желать работать с ценами в numpy-массивах, а лучше сразу в pandas.

Стандартные подходы в лоб работали разочаровывающе, что приводило к выполнению запроса к БД в течение 30 секунд и более. Не желая мириться, я нашёл несколько решений, которые полностью меня удовлетворили.

👣Ноги растут из объектной природы Python. Ведь у него даже целые числа являются объектами, что крайне отрицательно влияет на скорость работы. Менять язык я категорически не хотел.

Первым решением была группировка истории цен силами PostgreSQL, что приводило к незначительной просадке производительности на стороне БД, но ускоряло задачу примерно в ~3 раза. Подробнее метод описан здесь.

Итогом появилось понимание, что в Python надо каким-то образом получить весь набор данных одним куском, хотя бы строкой. И разобрать по numpy-массивам или сразу в pandas.

🐘Решение в лоб для PostgreSQL

Делаем группировку данных в sql-запрос. Пример:

Разобрать данные проще простого:

Производительность на ~1.7 млн. строк:

🐍Готовые пакеты Python

Python хорош своим сообществом, которое сталкивается со схожими проблемами. Для нашей цели подойдут следующие:

  • odo — создан для оптимизации скорости передачи данных из одного источника в другой. Полностью на Python. С PostgreSQL взаимодействует через SQLAlchemy.
  • warp_prism — C-расширение, используемое проектом Quantopian для получения данных из PostgreSQL. В основе заложен функционал odo.

Оба пакета используют возможность PostgreSQL копировать данные в CSV:

На выходе данные разбираются в pandas.DataFrame() или numpy.ndarray().

Так как warp_prism написан на C, он имеет существенное преимущество по скорости парсинга данных. Но одновременно с этим имеет существенный недостаток — ограниченную поддержку типов данных. То есть он парсит int, float, date и str, но не numeric. У odo подобных ограничений нет.

Для использования необходимо описать структуру таблицы и запрос с помощью пакета sqlalchemy:

Тесты скорости:

warp_prism.to_arrays() — подготовка python-словаря с numpy-массивами.

Что можно сделать с 🖱️ClickHouse🏠?

PostgreSQL всем хорош, кроме аппетита с размеру хранилища и необходимости настройки шардинга для больших таблиц. ClickHouse сам шардирует, хранит всё компактно, а работает молниеносно. Для примера таблица на PostgreSQL размером ~5Gb в ClickHouse умещается в ~1Gb. Использование ClickHouse для хранения цен описано здесь.

К моему огорчению odo не помог, хоть для sqlalchemy есть расширение clickhouse. Воспоминания о скорости работы clickhouse в консоли меня навели на идею обращения к БД через создание отдельного процесса. Я знаю, что это долго и ресурсозатратно, но результаты оказались выше всяких похвал.

Результат:

Запрос к HTTP-порту 🖱️ClickHouse🏠

Результаты чуть ухудшились при обращении непосредственно к порту 8123, где отвечает БД:

Но не обошлось без ложки дёгтя.

🥄Ложка дёгтя с ClickHouse

БД впечатлила на больших выборках, но на маленьких результаты разочаровали. В ~20 раз хуже odo. Но это издержки на дополнительный обвес с запуском процесса или обращением по HTTP.

Результаты:

🏁Заключение

Данной статьёй погоня за ускорением взаимодействия между Python и базами данных закончена. Для PostgreSQL при стандартных полях и необходимости универсального доступа к ценам лучшим способом является использование пакета warp_prism от Quantopian. При необходимости хранить большие объёмы истории и высокой частоте запросов большого количества строк идеально подойдёт ClickHouse.

💬В комментариях задавайте вопросы и запрашивайте код. Напишите, как можно ускорить получение малого количества строк из ClickHouse?

Александр Румянцев
Автор на Quantrum.me
Telegram-канал📣: @quantiki

Экспертиза торговых стратегий и алгоритмов, оптимизация среднесрочных портфелей.
☝Готовитесь к торговле на рынке? Пройдите обучение🎓 у профессиональных трейдеров👍.